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In the present ariicle the laws governing the flow of a
compressible fluid through an opening in a thin wall are ap-~
plied to the resistance of the air at high speeds.

Let us first consider jhe reaction, R, of a gasecus
jet escaping from a rocket forgad of a tube, one end of which
is stopped up. At the momentv considered, we shall call the
Pressures and Gensitlies inside and outside the tube respect-
ively, p, pa, and p, pPa, and we shall take 8 as the
area 0f the normal section of the tube. Applying the theorem

of momentum, we may write
(1) R=(p - py) S, =Qvs,

in which @ expresses the mass whick in a unit of time trav-
erses the unit of area of thz trus contrected section SO (sum

of the ninimum seciions of the elementary filaments) of the jet

* Bulletin de L'Institut Aerodynamigue de Kouitchino, Vol. VI.
1320,
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in the proximity of the opening, and v the rate of flow cal-
culated by assuming that the transformation is adiabatic, ac~
cording to the formula of Saint-Venant

(3) vz = 8.9 [(E_)X‘Vl ]

v -1 (pa)

in which ¢ is ths velocity of sound for the outside préssure'
and densiby.

The output @ is egual t'o (pav) or to (poco) according
as %§ 1, the density Po and the speed ¢, being connected
with the density p and the pressure p, inside the tube, by

the well known relations

_‘)LP_Q)J'/a = (_ 3y }2%

(
(g ). (v F1

0

(4) o = 1/2

If we take into consideration the equalities (3), (3),

and (4), formula (1) may be represented as follows:

RI =P -DP = §Q= (Y_)
(5) SlQV __Q,V—a-' A * (c)”
or Y
(v) =1 e2 | (-1 woyq)T72 _]
(8) f(c'}.‘f.<1 vy vZ [( 3 .\;2+1))_
and 2 / ( = ( ) /
_ (1) gy T s _ @n/e
(7) fﬁ%gbl- e A o e R B e 3
c
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By introduc¢ing the sections S and 8' defined by the

equalities
S - _S! v
= = l’ -
S, - S, -
(8) §_ = _8' Pl Y >,

Sl So RPav

we may also represent formula (5) as follows:

(9) R - _P-Pa __8S! = f (¥)
Spav2 Qv S (e)

The meaning ofgthis last substitution is as follows:
When v/c < 1, the pressure in the contracted ssction So is
equal to the outside pressure p,, but when v/oc > 1, it is

equal to 3%
g )T e
Y +1)

Y

and the jet must expand still further for the pressure to
fall to p,. As appears from formula (8), §' = ‘the area of
the actual section corresponding to such expansion, and 8 =
the area of the section of an imaginary rocket, defined by
the equality

8t - _5o

5 5,

We thus set down the reaction R, for speeds v either
less or greater than that of the sound ¢, at an outer den-
sity of pa.

Assuming in formula (B), v = o0, we obtain £(o) = 1/3.
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If the fluid were incompressible we should have to assume in
formulas (8) and {?) ¢ = o and, therefore, in that case,
f(v/e) = 1/8 for any speed v.

We can represent the reaction R as the sum of two mem-

bers
=R+ R

in which the first

Ry = %" Spav?

1}

depends only on the inertia of the fluid, and the second

R = 1 {8 - 3] s
eLpresses the increase in pressure due to the compressibility
of the fluid.

Let us try to utilize these results for expressing the
resistance R of a body of median section S moving in a
compressible fluid at a speed v. In a perfectly incompress-—
ible fluid the resistance due to inertia alone is null, for
as the energyv of tke body camnot be transmitted to the medium,
the fluid filaments will rejoin each other behind the body and
the pressures in the front and rear parts will counter-balance
each other. In a perfectly compressible fluid the resistance
R will not usually be null, for the energy of the body can
be transmitted to the surrounding fluid in the form of waves.
The fluid filaments, deviated by the front part of the body,
will again join beshind it, bubt the energy of the fluid par-

ticles will be lessened in proportion to the number absorbed
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by the waves: In the extreme case, those parts of the pres-
sure on the frent acd rear surfaces of the body which are sole-
ly due to the insrtia of the fluid, will alone counterbalance
each osher.

If we consider the resistance R of fluids as a phenome-
nnn inverse to that of the reaotion studied above, substitut-
ing the wedian section of the body for section S (see form-

ule 9), and taking into account the remark just made, we may

admit that

Thais formula can only be true if the waves, due to the elastic-
ity of the fluid, are veally formed. Now, when <v/c >1, the
formation of these waves must take place, for formula () which
can also be written as follows

S'Pav = 5,P Co
determines the presence of a shock wave, ocharacterized by a
sudden change "of section," densi®ty and spezd in front cf the
vody.* But when v/c< 1, there is nothing to lead us to an-

ticipate their formation, and consequently, in this case

= Q0

Spava

Tinally, if we designate by F{(v/c) a discontimuous func-

tion, equal tc fiv/c) - 1/2 when v/c >1, and to zero when

* In endeavoring to lessen the resistance due to the formation
of waves, we may study perforated projectiles, taking into
account formula (8).




-8 -

v/e <1, we can express bthe resistance of a perfectly compres-.

sitvle fluid by the formula

(20) B _ = r(v/e).
Spav*®

This .curve has a maximum at the point v/c = 1.74, which

we determine -as the root of the equation
;A2 'Y-" -]
y =1 (w) (v) s
[ 2 (3) 1] TYGE) -t

by taking v = 1.41. For very high speeds, by taking in form-
ula (10) v/c =&, we obbtain

/ Y1
ilz -3 '
(y?~ 1) (o #1) 2 4/5 _ 5.0555
so.v2  ( ay?) ¢ 3 )

pas
i

In true fluids we must take into account the friction on
the walls of the body and also the fact that the relative
speed near the wallg may be greater than the speed of the pro-
jectile and that roughnesses on the walls may then act as
small, independent obstables. In this case we may generalize

formula {(10), say, as follows:

B - o+ (( LAN P A0
SO, v 10 ( c)
The coefficients ay, &,, &, . and ei, 62, cre. de—

rend only on the form of the projectile and in terms in which
the kinematic viscosity explicitly figures.

As a first approximation, we may take



(11} R
Spav2

=k * Fv/e),

in whioh %k is the coefficient of resistance of the projsc-
tile at low speeds. The heavy line discontinuous curve shom
in the plate B.l has been calculated by assuming in formula
(11}, X = 0.114. This is the coefficient given by General N.
Maievski in his Ballistice. The dotted curve has been calcu-
lated by the formula

—Ji—:_= k +f{v/c) - 1/3

.Ov‘5
S'a

by giving to v/c¢ values <1 (see formula 6). The points
shown on the figure express well known results of experiments

mads in various countries.

On the Automatic Rotation of Projectiles,

The instability which we observe in projectiles shot into.
the air without being giver a movement of rotation about their
axis of symmetry, or without stabilizing planes, is a phenom-
enon cf automatic rotation.

Take a light model of a projectile, a; (see Fig. 1 given
below; through the center of gravity, assumed as being not too
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near the extremities, pass an axis normal to the axis of sym-
metry of the projectile and able to turn freely in the centers,
cc, of the fork d. Placing the whole device in an air cur-
rent, as indicated by the arrow, v, we observe that the mod-
el may be put in a state of auvtomatic rotation in either dirsc-
tion, according to the initial impulse imparted to it.

Wwe can prevent the occurrence of this phenomena of aubo-
matic rotation by bringing the center of gravity sufficiently
neaxr one end, cr by fitting the projectile with stabilizing
planes or a tail. The flight of such projectiles, as fired
from trench guns, is, as we know, mucn more steady.

The automatic rotation of projectiles is due, as I showed
in my article on the automatic rotation of rectangular plates,*
t6 the suction produced by the systematic formation of vor-
tices b Dbehind the extremity of the projectile moving with
the wind (see figure).

The suction effect of vortices in their incipient stage
is well brought out by the experiment on pendular motions in
a fluid stream.**

Mr. von Karman's Theory of the Resistance of Fluids***

is glso connected with this phenomenon.

* Bulletin of the Koutchino Aerodynamic Institute, No.II,

1809, p.44, and No.III, 1914, p.8S.
** L'Aerophile, January 1, 1911; Bulletin of the Koubchino
Aerodynamic Institute, No.IV, 1913, p.91.

*** Gbttinger Nachrichten,-math.phys.Kl. 1911, p.508; 1913,
p.547. Phys. Zeitscker. Vol.XIII 1913, p.49.
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